
 6. Klasse (Inf1)

Objekt

Objekt erstellen

Ein Objekt ist ein konkretes

Exemplar, das erstellt wurde.

In Java: new < Klassenname > ();

Bsp: new Viereck();

 6. Klasse (Inf2)

Klasse

Klassendefinition

Ein Bauplan für Objekte. Gleiche

Attribute, gleiche Methoden.

In Java: class < Klassenname > { /... }

Bsp: class Viereck { /... }

6. Klasse (Inf3)

Methode

Methodendefinition

Eine schlummernde Fähigkeit. Das

Objekt kann etwas tun.

In Java:

void < Methodenname > () { /... }

Bsp: void Drehen () { /... }

6. Klasse (Inf4)

Methodenaufruf

Eine Fähigkeit soll ausgeführt

werden. Das Objekt tut etwas.

In Java:
< Objektname > . < Methodenname > () ;

Bsp: viereck1.Drehen();

6. Klasse (Inf5)

Attribut

Attributdeklaration

Ein Merkmal eines Objekts. Speichert

Informationen zu dem Objekt.

Deklaration = Definition.

In Java:

< Datentyp > < Attributname >;

Bsp: int groesse;

6. Klasse (Inf6)

Übergabewert / Parameter

Methodenaufruf

Ein Wert, den eine Methode beim Aufruf

übergeben bekommt.

Bsp: GeheSchritte(5) oder SetzeFarbe(Grün)

In Java ist der Übergabewert eine lokale

Variable.

In Java: void < Methodenname > (< Datentyp >

< Variablenname >){ /... }

7. Klasse (Inf7)

Bedingte Anweisung

Etwas wird nur ausgeführt, wenn eine

Bedingung wahr ist. Es kann auch eine

Alternative angegeben werden, die nur

ausgeführt wird, wenn die Bedingung falsch ist.

In Java: if (< Bedingung >) { /... }

else { < Alternative >}

Bsp: if (viereck.farbe==gruen) {Drehen();}

7. Klasse (Inf8)

Bedingungen

verknüpfen

Zwei Wahrheitswerte können mit

UND oder ODER verknüpft werden.

In Java: && für UND ; || für ODER

Bsp: "Liegt x zwischen 3 und 10?"

x < 10 && 3<x

7. Klasse (Inf9)

Bedingte Wiederholung

Etwas wird wiederholt ausgeführt, solange eine

Bedingung erfüllt ist. Nach jedem Durchlauf

wird die Bedingung überprüft.

In Java: while (< Bedingung >) { /... }

Bsp: while (NichtVorWand()) {

SchrittGehen();}

7. Klasse (Inf10)

Bedingung

Vergleiche

Eine Bedingung ist ein Wahrheitswert,

 also true oder false.

Ein Vergleich ist die einfachste Bedingung.

Bsp: 5 < 4

90 < x

In Java: Ungleich (!=), Istgleich (==), Kleiner (<),

Größer (>), Kleinergleich (<=), Größergleich (>=)

9. Klasse (Inf11)

Datentyp

Eine Klassifizierung von Werten.

Es gibt Text (z.B. „Hallo!“), Zahl (z.B. 42),
Wahrheitswert (z.B. true) und Zeichen (z.B. ‚c‘).

In Java: int (Ganzzahl), double (Kommazahl),

String (Text), char (Zeichen),

boolean (Wahrheitswert).

9. Klasse (Inf12)

Funktion /

Methode mit Rückgabewert

Eine Methode, die einen Rückgabewert hat.

In Java: Schreibe den Datentyp des

Rückgabewerts statt void!

UND return < Rückgabewert >;

Bsp: int EinsGeben(){

return 1;}

9. Klasse (Inf13)

Wertzuweisung

Zuweisung

Eine Variable/Ein Attribut erhält

einen Wert. Der Wert muss zum

Datentyp passen.

In Java: < Variable > = < Wert >;

Bsp: groesse = 200;

9. Klasse (Inf14)

lokale Variable

Deklaration einer Variablen

Kann Werte speichern. Eine lokale

Variable wird innerhalb einer Methode

definiert und ist danach nicht mehr

verfügbar.

In Java: < Datentyp > < Attributname >;

Bsp: int groesse;

9. Klasse (Inf15)

Konstruktor

Eine Methode, die Objekte der Klasse

erstellt. Wird für Erstzuweisungen

verwendet.

In Java: < Klassenname > () {/...}

Bsp: Viereck(){

groesse=100;}

9. Klasse (Inf16)

Unterklasse

Eine Klasse, die Zugriff auf alle Attribute

und Methoden einer anderen Klasse, der

Oberklasse, hat.

In Java: class < Klassenname > extends

< Name der Oberklasse > { /... }

Bsp: class Papagei extends Vogel { /... }

9. Klasse (Inf17)

Methodenaufruf auf der

Oberklasse

Konstruktoraufruf auf der

Oberklasse

Eine überschriebene Methode kann auf

die passende Methode der Oberklasse

zugreifen.

In Java: super.< Methodenname > ();

super(); ruft den Konstruktor der

Oberklasse auf.

9. Klasse (Inf18)

Überschreiben

Definiert man eine Methode, die es

in der Oberklasse schon gibt, neu,

wird bei jedem Aufruf die Methode

der Unterklasse aufgerufen.

Das nennt man Überschreiben.

10. Klasse (Inf19)

ArrayList

Feld

Objekte gleicher Klasse kann man in einer

Liste der Klasse ArrayList verwalten.

In Java: new ArrayList < Klassenname >();

folgende Methoden sind möglich:

size() – remove(i) – contains(e) –

remove(e) – get(i) – add(e) – set(i,e)

10. Klasse (Inf20)

ArrayList

durchlaufen

Idee: Zähle von 0 bis zur Länge der

ArrayList - 1

Bsp in Java:

for (int i = 0; i < Autos.size(); i++){

 Autos.get(i).FahrernamenGeben() ==

„Günther“;}

10. Klasse (Inf21)

Kapselung

Der Zugriff auf Attribute und

Hilfsmethoden einer Klasse wird

eingeschränkt.

In Java: public < Methode >

private < Attribut >

Bsp: public void Drehen() { /...}

10. Klasse (Inf22)

Referenzen

Eine Referenz speichert einen Verweis auf

ein Objekt. Die Referenz kann leer sein.

In Java: Statt dem Datentyp steht die

Klasse des referenzierten Objekts.

Bsp: Viereck viereck1;

viereck1 = new Viereck();

10. Klasse (Inf23)

for each Schleife

Vereinfachte Iteration über Listen.

Idee: Definiere eine lokale Variable als Referenzattribut mit dem

aktuellen Objekt der Liste. Die Schleife nimmt dann für jeden

Durchlauf das nächste Objekt in der Liste für das Referenzattribut.

In Java: for(< Klasse > < Name RefAtt > :

< Name ArrayList >){ /... }

Bsp: for (Auto a : Autos){

 a.FahrernamenGeben() == „Günther“;}

10. Klasse (Inf24)

Methodenaufrufe

auf Referenzen

Eine Referenz verwaltet ein Objekt. Gibt eine

Methode eine Referenz zurück, ist das wieder

ein Objekt -> Objekt.Methode.Methode.

Bsp in Java: Haus haus;

 (mit der Methode Fenster Fenster(){/...})

haus.Fenster().Aufmachen()

haus.Klingeln();

